
Contest 3 Report

MIE443 Mechatronics Systems: Design & Integration
Contest 3: Follow Me Robot Companion

Due: April 9th, 2024

Team #4

Team Member Student Number

Henry (Hua Hao) Qi 1005758039

Harry Park 1005674405

Alastair Sim 1006460287

Yi Lian 1005709333

1.0 Problem Definition/ Objective

The goal of MIE443: Contest 3 is to develop, in a robot, the ability to engage with users. The
interaction is carried out with a TurtleBot, which will follow a user while he/she moves in an
open area environment. In addition, the robot should be able to interact with the user through the
use of emotions. The team is assigned to develop four distinct emotions for the robot for four
different environmental stimuli which occur during the follower task. Out of the four emotions,
two must be primary/reactive emotions and two must be secondary/deliberative emotions. The
task is complete once the Turtlebot has demonstrated all of its emotions and functionalities and
visited all four labelled markers that the user will be instructed to walk to. The robot follower
task is defined to be fixed-timed, with a robot-based subject of action, and a movement goal of
movement-while. The fixed time constraint is placed as the robot must show all four emotions
within a time limit. However, a time constraint is also placed for showing the correct emotion
corresponding to the correct stimuli since the robot should react/respond to the stimuli within an
appropriate time frame. The subject of action is robot-based since the idea of the task is to have
the robot place itself according to the user in the environment. Lastly, the movement goal is
movement-while since the robot is following the user while responding to different stimuli in the
environment.

1.1 Contest Requirements

The contest requirements are outlined as follows:

● The TurtleBot must be able to identify and track a user.
● The competition environment for this contest will be held in an open area. Within this

environment, there will be 4 labelled markers that the person leading the robot will be
instructed to walk to.

● For the interaction portion of this contest, the TurtleBot will be designed to have unique
emotional responses to 4 environmental stimuli:

1. When it loses track of the person it is following.
2. When it cannot continue to track a person due to a static obstacle in its path.
3. and 4. Two other stimuli of our own choosing.

● For the 2nd stimulus, an obstacle will be placed to obstruct the robot’s path. The object
will be short enough so that it does not interfere with the depth information provided by
the onboard Kinect sensor. The object will be removed from the environment after the
TurtleBot has displayed its corresponding emotion.

● For this contest, all of the TurtleBot sensors are available to use. The callbacks required
for the Kinect RGB and depth information, the bumper sensor and velocity commands
are already provided; however, if you wish to use any other sensory data, your team will
need to add the corresponding callbacks and subscribers.

1

● You are encouraged to use many input and output modes for the robot. Your team must
implement original motion and sound for the emotion interaction part of the contest. You
have access to the play_sound library which can be used to play stored .wav files. Please
note: the emotions of the robot cannot be stated by the robot or team members at any time
during the contest (for example “I am feeling sad.”).

● Each team will present their robot in front of a panel of three judges. A time limit of 8
minutes will be allocated to the contest to show your robot’s functionality to the judges.
MIE 443 Contest 3 Page 3

● The robot’s emotions must be chosen from the list provided below:
a. Fear
b. Positively excited
c. Infatuated
d. Pride
e. Anger
f. Sad
g. Discontent
h. Hate
i. Resentment
j. Surprise
k. Embarrassment
l. Disgust
m. Rage

2

2.0 Strategy

Since the robot's emotions and environmental stimuli are decided on before the contest trials, the
team decided to develop a finite state machine that specifies the conditions in which the robot
will change state and the actions performed when the state changes. The overall algorithm is
separated into five states: default (follower), target lost (stimulus 1), unforeseen obstacle
(stimulus 2), sudden movement (stimulus 3), and user mishandling (stimulus 4). These five states
correspond to 5 emotions respectively: neutral, sad (secondary), surprise (primary), fear
(primary), and rage (secondary), where each emotion is portrayed through the characters of
Pixar’s film “Inside Out”. The robot is preprogrammed to start in the default state, where the
follower task begins. It will only transition to one of the other four states if any corresponding
stimulus is triggered. When triggered, after expressing its emotion/reaction, the robot will revert
to the default state and continue its task.

Figure 2.1: Characters from “Inside Out”: Sadness, Anger, Fear, and Riley (Left to Right)

2.1 State 1 - Default State (Follower)

In the default state, the robot will carry out its task as a robot follower, where it also detects any
environmental stimulus. When an object (person) is presented in front of the Turtlebot, it will
attempt to remain a distance of one meter from the person by adjusting its velocities accordingly.
The emotion corresponding to the default state is neutral since there are no environmental
stimuli.

3

2.2 State 2 - Target Lost (Stimulus 1)

When the robot no longer detects the user that it is following, it will transition from the default
state to the Target Lost state. This is detected through the follower code - if there are not enough
points to generate a point cloud of the user, it means the robot has lost its target. Once the
Turtlebot loses track of the person, it will begin to display audio and actions of sadness, as well
as a visual of the character “Sadness”. The secondary emotion of sadness is chosen because the
robot must think and understand that it has lost track of its human companion. Since it is a
reaction to a deliberative emotion, the robot will slowly sweep 45 degrees to the left and to the
right in an attempt to relocate its target. As time progresses, the robot gradually transitions from
worried to sobbing and eventually cries out loud when it fails to relocate its target after a few
attempts to sweep to the left and right. This process of relocating its target is continued until the
user is detected again, where the robot will transition back to the default state.

2.3 State 3 - Unforeseen Obstacle (Stimulus 2)

The robot will transition from the default state to the Unforeseen Obstacle state when it
encounters an obstacle that it was unaware of. This occurs when the robot’s bumper senses an
obstacle but it does not detect it with its Kinect depth sensor. Once the Turtlebot encounters the
obstacle, it will move back abruptly and freeze in place. This motion will be accompanied by an
abrupt “DOINK!!” sound effect to represent surprisement. Also, the main character, Riley’s
surprised face will be shown to reinforce the astonishment. In this state, the primary emotion,
surprise, is chosen because this is a reactive mechanism, where the robot is startled by the
obstacle. After being startled for a few seconds, the robot will transition back to the default state
and attempt to follow its target again.

2.4 State 4 - Sudden Movement (Stimulus 3)

The robot will transition from the default state to the Sudden Movement state when it is suddenly
picked up by the user. This is determined through the robot’s wheel drop where if the sensors
detect wheel drop, then the Turtlebot has been lifted up off the ground. Once the robot has been
picked up, it will play the voice line “Wahhhhh!!!” and frantically move its wheels simulating
when a person kicks their legs in mid-air. The primary emotion fear is chosen because this is a
reactive mechanism since the robot is scared of being suddenly picked up. The robot will
transition back to the default state once it has been put back on the ground.

2.5 State 5 - User Mishandling (Stimulus 4)

The robot will transition from the default state to the User Mishandling state when it is
mistreated by the user through multiple hits on the bumper and is picked up again and held in the

4

air. This is determined through the robot’s bumpers and an internal boolean variable that keeps
track of whether the robot has been bumped before. When the robot is hit on its bumpers by the
target user, as opposed to an obstacle, its anger will start to build up, as it displays the character
Anger’s rage building up with sound clips such as “stop it”. Once enough rage has been built up,
it will play the voice line “STOP IT!!” multiple times along with a visual of Anger’s rage burst
out. When the robot is in its rage state, it will spin in circles quickly to express its strong anger.
The secondary emotion of rage is chosen because the robot must recognize that the user has
ignored its request to not be hit in the bumpers. This is continued for a few seconds until the
robot has calmed down and transitions back to the default state.

5

3.0 Robot Design

3.1 Sensory Design

The sensory design of the robot consists of proprioceptive and exteroceptive sensors. The
proprioceptive sensors, which include the internal gyroscope and motor encoders, will be
discussed in Section 3.1.1 and the exteroceptive sensors, which include the Kinect, wheel drop,
and cliff sensors and bumpers, will be discussed in Section 3.1.2.

3.1.1 Proprioceptive Sensors

Proprioceptive sensors are used to determine the internal state of the robot. They help provide
internal information about the robot, such as its orientation as well as linear and angular
velocities. In our algorithm, we rely on using odometry to estimate the robot’s position and
orientation relative to a starting location. This starting point is given as an x and y coordinate as
well as an orientation around the z-axis. While the x and y coordinate position of the robot is not
used in our algorithm, the yaw is used extensively to track the turns that the robot makes. This is
done using the internal gyroscope, which helps detect, measure, and maintain the angular
motions of the robot. With the help of the gyroscope, we can specify a certain angle for the robot
to turn, and determine when the robot is done turning by comparing the yaw of the initial and
final positions of the robot. This can ensure that the intended turns for the robot are carried out
accurately. As well, the gyroscope is also used to maintain the robot’s angular velocity, which is
crucial in helping the robot express its emotions. When the robot experiences sadness, it is
programmed to turn at a low speed whereas when the robot experiences rage, it is programmed
to turn quickly.

The second set of proprioceptive sensors used is the robot’s motor encoders, which are used to
provide information on a rotary motor’s speed and position. With the help of motor encoders, the
robot’s linear velocity can be specified and maintained. This is mainly used in the follower code,
where the robot receives a set of velocity values required to maintain a one-meter following
distance to its target user.

3.1.2 Exteroceptive Sensors

Exteroceptive sensors are used to determine the external state of the robot. They can help provide
external information about the environment, such as the location of the target user. In our
algorithm, we rely on the Kinect depth sensor attached to the robot to detect the existence of a
target user and their location. The Kinetic depth sensors use laser scanning by subscribing to the
scan topic and retrieving laser distances to the object in front of it. The lasers are produced using
an infrared projector and a camera that can see the tiny points that the projector produces. Using

6

the 3D depth sensor, the robot has a 45-degree vertical field of view, a 58-degree horizontal field
of view, and a nominal range of 0.8-3.5 meters, which is useful for object detection. While
travelling, the follower module uses sensor feedback to help the robot follow and maintain a
one-meter distance from the user. In addition to the depth sensor, the Kinect sensor is also
equipped with an RGB camera which aids in object detection.

On top of the Kinect sensor, the robot is equipped with three bumpers located on the left, centre,
and right sides of the base platform of the robot. These sensors help the robot detect any
collisions with obstacles. The sensor feedback of the bumpers helps tell the robot if it has
collided with any obstacles that may have been missed in its blind spot. Once the bumper has
been pressed, our algorithm will help the robot express the emotion of surprise since it has
collided with an unexpected obstacle. In addition, the team decided to utilize the bumper sensor
to detect if the robot had been physically hit by its surroundings, which would cause the robot to
build up its anger.

The robot is also equipped with 2 wheel drop sensors and 3 cliff sensors which detect wheel drop
and measure the distance between the robot and the floor by constantly sending infrared signals
to the surface. They help determine if the robot has reached an edge or been lifted if the wheels
drop or if the signal doesn't bounce back immediately. This is useful in detecting when the robot
is picked up by the user prompting the robot to express fear and rage.

3.2 Controller Design

To implement the strategy described in section 2.0, the controller was designed to operate in five
different states: default, target lost, unforeseen obstacle, sudden movement, and user
mishandling. Within states 2 and 3 of the finite state machine, the robot follows a sequential
controller design, where each stimulus corresponds to an immediate action based on the robot’s
sensory data to express its primary emotions. In states 1 and 4, the robot plans a set list of actions
to execute based on sensory data obtained at each sub-state, following a deliberative controller
design. Hence, the overall architecture involves both deliberative and reactive controls, making it
a hybrid controller design. Callback functions and custom functions are used to ensure the
individual states are completed successfully. The details of the algorithm are explained in the
following sections along with a visual representation of the overall control structure in Figure
3.2.1.

7

Figure 3.2.1 Overview of controller.

3.2.1 Main Contest Code (contest3.cpp)

This is the main code that initializes ROS by initializing variables and functions as well as
subscribing to all necessary ROS topics. These include boolean variables that track the robot’s
conditions like bumperPressed and robotRaised, counting variables that track the progress of the
emotion like rxnTime and rageCount, callback functions that extract robot sensor information
like bumperCB() and wheelCB(), and topics that provide instructions from other files or
information from sensors like follower and bumper.

Once initialization has been completed, a while loop is constructed to check for environmental
stimuli periodically. Upon startup, it executes ros::spinOnce() to update information on
subscribed topics or to publish them. The robot starts in the default state and follows the velocity
commands provided by the follower topic. At the same time, there are condition checks that
determine if the robot detected any form of stimuli through its sensors. These include checking if
any of the bumpers are pressed, wheels are dropped, and if the robot still detects its target. Once
all condition checks are completed, the algorithm proceeds to state identification.

8

State identification is carried out using the conditions from the robot’s sensors. To remain in the
default state, the robot must still be following its target with no interference. This means that the
bumpers should not be pressed and the wheels should not be dropped. If any one of the three
conditions is not met, the condition checks for other states will progress.

The first check is through the robot follower code. When the follower detects a target, it
publishes velocities that the robot uses to follow its users. If no target is detected, the velocity
published will be zero. This indicates that the robot has lost its target, and will enter the target
lost state. In this state, the robot will attempt to display sadness. This is done by prompting the
robot to turn left and right by publishing different angular velocities. These turns are controlled
by the variable rxnTime where at certain times the robot will carry out certain actions (ie. rotate
left). These actions include using the playImage(), playVideo(), and playWave() functions to
display visuals and sounds.

The second check is through the robot’s bumpers. If the bumpers have been pressed but the robot
follower code is still publishing non-zero velocities, that means the robot has either hit an unseen
obstacle or is being hit by something. To determine what scenario the robot is experiencing, an
internal counter tracks how many times the robot’s bumpers have been hit within a second. If the
robot’s bumper records only one hit, then it will respond with surprise. Surprise is expressed
using the playWave() function to display a “DOINK” sound effect, which is a classic surprise
sound effect from cartoons. The reaction also pops up a visual of Riley’s surprised face,
accompanied by a natural reflex of moving away from the unexpected object by publishing a
negative linear velocity to prompt the robot to move backwards. If the robot’s bumper records
more than one hit, it will be directed to the user's mishandling state and record how many times it
gets hit. Each hit contributes to its rage build-up, which is shown by displaying a series of
images of anger using playImage(), accompanied by dialogues of annoyance. Once the count
reaches five, the robot will respond with rage. Rage is expressed using the playVideo() function
to show a video of extreme anger. It is then followed by vigorous spinning by publishing a high
angular velocity.

The last check is through the robot’s wheel drop. If the robot’s wheels are dropped, then the
robot is lifted a distance off the floor. Once the robot is lifted, it will respond with fear. Fear is
expressed with a screaming sound played using playWave() function and accompanied by rapid
wheel movement. This wheel movement is prompted by publishing a high linear velocity, which
mimics the human behaviour of kicking their legs when lifted in the air.

9

4.0 Future Recommendations

Future recommendations for enhancing the robot’s performance are as follows:

● Play Video and Move Simultaneously: The current algorithm uses openCV’s imshow()
function to display the frames of videos, which does not run simultaneously with the
robot’s movement commands. Consequently, the video cannot play any audio attached to
the video file. If the audio can play and the video can be synchronized with the robot’s
movements, it would make the robot’s expressions more natural and intuitive.

● Play Voice Lines of Original Characters: Current audio outputs from the robot use
non-copyrighted voice clips and background music, which is not in sync with the original
characters that appear in the visual outputs. If the audio clips were generated with AI to
match the original characters, it would also make the expressions of the robot more
appealing.

● Additional Sensors for Various Stimuli: In addition to the sensors used in this contest,
adding more accurate height sensors or motion detection sensors would allow us to add
different types of stimuli to engage with the robot rather than the limited options we had
for this contest.

● Adding Obstacle avoidance: The robot could instruct the user to wait when it is blocked
by a static obstacle then perform a maneuver to avoid the obstacle.

10

5.0 Appendix

Appendix A: Contribution Table

Section Subsection Henry (Hua Hao) Qi Harry Park Alastair Sim Yi Lian

1.0 ✔

2.0 ✔

3.0 3.1 ✔ ✔ ✔

3.2 ✔ ✔ ✔

4.0 ✔ ✔

Code
Finite State ✔ ✔

OpenCV ✔ ✔

11

Appendix B: Visuals of each Stimulus

Default State: Neutral

Stimulus 1: Sad

Stimulus 2: Surprise

12

Stimulus 3: Fear

Stimulus 4: Rage

Demonstration of Visuals: https://www.youtube.com/watch?v=I3mC5yHaFqk

13

https://www.youtube.com/watch?v=I3mC5yHaFqk

Appendix C: contest3.cpp

#include <header.h>

#include <ros/package.h>

#include <geometry_msgs/Twist.h>

#include <kobuki_msgs/BumperEvent.h>

#include <kobuki_msgs/WheelDropEvent.h>

#include <imageTransporter.hpp>

#include <chrono>

#include <inttypes.h>

#include <unistd.h>

#include <string>

//display video

#include "opencv2/opencv.hpp"

#include <opencv2/core.hpp>

#include <opencv2/imgcodecs.hpp>

#include <opencv2/highgui.hpp>

#include <iostream>

using namespace std;

using namespace cv;

int screen_w = 1366;

int screen_h = 768;

bool robotRaised = false;

int raiseCount = 0;

uint64_t timer = 0;

uint16_t maxHeight = 500;

int lostCount;

bool fearDone = false;

bool bumperDone = false;

int rageCount = 0;

uint8_t bumperState[3] = {kobuki_msgs::BumperEvent::RELEASED,

kobuki_msgs::BumperEvent::RELEASED, kobuki_msgs::BumperEvent::RELEASED};

14

uint8_t wheelState[2] =

{kobuki_msgs::WheelDropEvent::RAISED,kobuki_msgs::WheelDropEvent::RAISED};

bool bumperPressed;

std::chrono::time_point<std::chrono::system_clock> rxnTimeStart;

uint64_t rxnTime = 0;

uint64_t rxnTimeTotal = 0;

geometry_msgs::Twist follow_cmd;

geometry_msgs::Twist raw_cmd;

int world_state;

void rawFollowerCB(const geometry_msgs::Twist msg){

raw_cmd = msg;

}

void followerCB(const geometry_msgs::Twist msg){

follow_cmd = msg;

}

void bumperCB(const kobuki_msgs::BumperEvent::ConstPtr& msg){

bumperState[msg->bumper] = msg->state;

}

void wheelCB(const kobuki_msgs::WheelDropEvent::ConstPtr& msg){ //left is

0, right is 1

wheelState[msg->wheel] = msg->state;

}

string path_to_sounds = ros::package::getPath("mie443_contest3") +

"/sounds/";

string path_to_videos = ros::package::getPath("mie443_contest3") +

"/videos/";

string emotionArray[4]=

{"Sad_short.mp4","Surprised_short.mp4","Fear_ahh_short.mp4","Anger_short.m

p4"}; // 0=sad, 1=surprised, 2=fear, 3=angy

15

// change playimage to display image

int playImage(string emoName) {

// image = imread(PATH) to overwrite

namedWindow("Emotion Image", WINDOW_NORMAL);

resizeWindow("Emotion Image", screen_w, screen_h);

Mat image = imread(path_to_videos + emoName + ".jpg");

imshow("Emotion Image", image);

char c = waitKey(10);

}

int playVideo(String emoName) {

// ---Code below for displaying video---

// Create a Video Capture object and open the input file

// If the input is web camera, pass 0 instead of the video

file

VideoCapture cap(path_to_videos + emoName + ".mp4");

namedWindow("Emotion Video", WINDOW_NORMAL);

resizeWindow("Emotion Video", screen_w, screen_h);

// Check if camera opened successfully

if (!cap.isOpened()){

cout << "Error opening video stream or file" << endl;

return -1;

}

while (1){

Mat frame;

// capture frame-by-frame

cap >> frame;

// If the frame is empty, break immediately

if (frame.empty())

break;

// Display the resulting frame

imshow("Emotion Video", frame);

// Press ESC on keyboard to exit

char c=(char)waitKey(25);

if (c==27)

break;

16

}

// When everything done, release the video capture object

cap.release();

// --- End of code for displaying video ---

}

void closeVisual(int sleepTime)

{

sleep(sleepTime);

destroyAllWindows();

sleep(1);

}

//---

int main(int argc, char **argv)

{

ros::init(argc, argv, "image_listener");

ros::NodeHandle nh;

sound_play::SoundClient sc;

teleController eStop;

//publishers

ros::Publisher vel_pub =

nh.advertise<geometry_msgs::Twist>("cmd_vel_mux/input/teleop",1);

//subscribers

ros::Subscriber follower =

nh.subscribe("follower_velocity_smoother/smooth_cmd_vel", 10,

&followerCB);

ros::Subscriber rawFollower =

nh.subscribe("follower_velocity_smoother/raw_cmd_vel", 10,

&rawFollowerCB);

ros::Subscriber bumper = nh.subscribe("mobile_base/events/bumper", 10,

&bumperCB);

ros::Subscriber wheelDrop =

nh.subscribe("mobile_base/events/wheel_drop", 10, &wheelCB);

// contest count down timer

ros::Rate loop_rate(10);

17

std::chrono::time_point<std::chrono::system_clock> start;

start = std::chrono::system_clock::now();

uint64_t secondsElapsed = 0;

imageTransporter rgbTransport("camera/image/",

sensor_msgs::image_encodings::BGR8); //--for Webcam

//imageTransporter rgbTransport("camera/rgb/image_raw",

sensor_msgs::image_encodings::BGR8); //--for turtlebot Camera

imageTransporter depthTransport("camera/depth_registered/image_raw",

sensor_msgs::image_encodings::TYPE_32FC1);

int world_state = 0;

double angular = 0.0;

double linear = 0.2;

geometry_msgs::Twist vel;

vel.angular.z = angular;

vel.linear.x = linear;

while(ros::ok() && secondsElapsed <= 480){

ros::spinOnce();

ROS_INFO("start");

std::cout << "This is the output from follower: \n" << follow_cmd

<< std::endl;

//---Check Sensory Inputs ---

//check bumper

bumperPressed = false;

if (bumperState[0] == kobuki_msgs::BumperEvent::PRESSED) //left

bumper

{

ROS_INFO("Left Bumper PRESSED!!");

bumperPressed = true;

}

18

if (bumperState[1] == kobuki_msgs::BumperEvent::PRESSED) //centre

bumper

{

ROS_INFO("Centre Bumper PRESSED!!");

bumperPressed = true;

}

if (bumperState[2] == kobuki_msgs::BumperEvent::PRESSED)

{

ROS_INFO("Right Bumper PRESSED!!");

bumperPressed = true;

}

if (wheelState[0] == kobuki_msgs::WheelDropEvent::DROPPED ||

wheelState[1]==kobuki_msgs::WheelDropEvent::DROPPED)

{

robotRaised = true;

ROS_INFO("LIFTED UP!!! Raise count: %d", raiseCount);

}

else

{

robotRaised = false;

ROS_INFO("ON GROUND...");

}

//---Actions to trigger world states---

// DEFAULT: state 0 (follower)

if (!fearDone)

{

// 1. lose track - sad...

if (world_state == 0 && raw_cmd.linear.z == 0.1 &&

raw_cmd.linear.x == 0 && raw_cmd.angular.z == 0)

{

if (world_state != 1)

{

19

}

lostCount++;

if (lostCount > 8)

{

if (world_state !=1)

{

//playImage();

sleep(0.5);

sc.playWave(path_to_sounds+"sad_bgm.wav");

playImage("sad1");

ROS_INFO("Reaction timer started!");

rxnTimeStart = std::chrono::system_clock::now();

}

world_state = 1;

}

}

else lostCount = 0;

// 2. obstacle - surprise...! (primary)

if (!bumperDone)

{

if (bumperPressed && world_state == 0)

{

if (world_state != 2)

{

sleep(0.5);

sc.playWave(path_to_sounds + "surprise1.wav");

playImage("surprise");

rxnTimeStart = std::chrono::system_clock::now();

}

world_state = 2;

}

}

// 3. - pick up

if (robotRaised)

{

ROS_INFO("WORLD STATE: %d", world_state);

20

if (world_state != 3)

{

sleep(0.5);

sc.playWave(path_to_sounds + "fear1.wav");

playImage("fear1");

ROS_INFO("rxn time starting!!!");

rxnTimeStart = std::chrono::system_clock::now();

}

world_state = 3; // RAGE(2') if held up at low height

}

}

else

{

//increment counters

if (bumperPressed){ //add counting with robot raise

if (rageCount ==0) //hit once

{

sleep(0.5);

sc.playWave(path_to_sounds + "rage1.wav");

playImage("rage1");

}

else if (rageCount ==1) //hit twice

{

sc.stopWave(path_to_sounds + "rage1.wav");

sleep(0.5);

sc.playWave(path_to_sounds+ "rage2.wav");

playImage("rage2");

}

else if (rageCount ==2) //hit 3times

{

sc.stopWave(path_to_sounds+"rage2.wav");

sleep(0.5);

sc.playWave(path_to_sounds+"rage3.wav");

playImage("rage3");

21

}

else

{

if (world_state != 4)

{

sc.stopWave(path_to_sounds+"rage3.wav");

sleep(0.5);

sc.playWave(path_to_sounds+"rage4.wav");

rxnTimeStart = std::chrono::system_clock::now();

}

world_state = 4;

}

rageCount ++;

}

}

// Default state: follower

if(world_state == 0)

{

//fill with your code

vel_pub.publish(follow_cmd);

ROS_INFO("Following target...");

if (rageCount == 1) playImage("rage1");

else if (rageCount == 2) playImage("rage2");

else if (rageCount == 3) playImage("rage3");

else if (rageCount == 4) playImage("rage4");

else playImage("default");

}

// 1. lose track of person - sad... (2')

else if(world_state == 1)

{

ROS_INFO("SAD...");

if (rxnTime < 3) //turn left

{

22

vel.angular.z = 0.6;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad1");

}

else if (rxnTime < 4) //stop after turning to left

{

vel.angular.z = 0;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad1");

}

else if (rxnTime < 9) //turn right

{

vel.angular.z = -0.6;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad1");

}

else if (rxnTime < 10) //stop and show emotion (sad 1)

{

vel.angular.z = 0;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad2");

sleep(0.5);

sc.playWave(path_to_sounds+"sad_bgm.wav");

}

else if (rxnTime < 16) // turn left again

{

vel.angular.z = 0.6;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad2");

}

23

else if (rxnTime < 17) //stop for a sec

{

vel.angular.z = 0;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad2");

}

else if (rxnTime < 20)

{

vel.angular.z = -0.6;

vel.linear.x = 0;

vel_pub.publish(vel);

playImage("sad2");

}

//exit statement

else

{

sleep(0.5);

sc.playWave(path_to_sounds+"sad_final.wav");

playImage("sad3");

sleep(2);

sc.playWave(path_to_sounds+"sad_final.wav");

playVideo("sad_final");

closeVisual(0);

world_state = 0;

rxnTime = 0;

lostCount = 0;

}

}

else if (world_state == 2)

{

ROS_INFO("SURPRISE!!");

24

if (rxnTime == 0)

{

vel.angular.z = 0;

vel.linear.x = -0.3;

vel_pub.publish(vel);

}

else if (rxnTime < 3)

{

ROS_INFO("FROZEN...!");

vel.angular.z = 0;

vel.linear.x = 0;

vel_pub.publish(vel);

}

// exit Statement

else

{

sc.stopWave(path_to_sounds+"surprise1.wav");

closeVisual(0);

world_state = 0;

rxnTime = 0;

bumperDone = true;

}

}

else if (world_state == 3)

{

if (robotRaised)

{

if (rxnTime < 3) //air,state 3: start video of fear, start

wheel spinning

{

ROS_INFO("(STATE 3) PUT ME DOWN....!");

//fear

playImage("fear1");

vel.angular.z = 0;

vel.linear.x = 0.5;

25

vel_pub.publish(vel);

}

else //exit statement

{

sleep(1);

sc.stopWave(path_to_sounds+"fear1.wav");

ROS_INFO("back to world state 0");

vel.angular.z = 0;

vel.linear.x = 0;

vel_pub.publish(vel);

}

}

else

{

world_state = 0;

rxnTime = 0;

fearDone = true;

}

}

else if (world_state == 4)

{

rageCount = 0;

playImage("rage4");

// RAge

if (rxnTime < 15 && !robotRaised)

{

vel.angular.z = 2.5;

vel.linear.x = -0.1;

vel_pub.publish(vel);

}

else

{

closeVisual(0);

sc.stopWave(path_to_sounds+"rage4.wav");

vel.angular.z = 0;

vel.linear.x = 0;

26

vel_pub.publish(vel);

rageCount = 0;

world_state = 0;

rxnTime = 0;

}

}

if (world_state == 1 || world_state == 2 || world_state == 3 ||

world_state == 4)

{

rxnTime =

std::chrono::duration_cast<std::chrono::seconds>(std::chrono::system_clock

::now()-rxnTimeStart).count();

}

ROS_INFO("Reaction Time: %" PRIu64, rxnTime);

secondsElapsed =

std::chrono::duration_cast<std::chrono::seconds>(std::chrono::system_clock

::now()-start).count();

loop_rate.sleep();

}

ROS_INFO("Finished in: %" PRIu64, secondsElapsed);

return 0;

}

27

Appendix D: follower.cpp

/*

* Copyright (c) 2011, Willow Garage, Inc.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are

met:

*

* * Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* * Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

the

* documentation and/or other materials provided with the

distribution.

* * Neither the name of the Willow Garage, Inc. nor the names of its

* contributors may be used to endorse or promote products derived

from

* this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS

IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE

* POSSIBILITY OF SUCH DAMAGE.

*/

28

#include <ros/ros.h>

#include <pluginlib/class_list_macros.h>

#include <nodelet/nodelet.h>

#include <geometry_msgs/Twist.h>

#include <sensor_msgs/Image.h>

#include <visualization_msgs/Marker.h>

#include <turtlebot_msgs/SetFollowState.h>

#include "dynamic_reconfigure/server.h"

#include "turtlebot_follower/FollowerConfig.h"

#include <depth_image_proc/depth_traits.h>

namespace turtlebot_follower

{

//* The turtlebot follower nodelet.

/**

* The turtlebot follower nodelet. Subscribes to point clouds

* from the 3dsensor, processes them, and publishes command vel

* messages.

*/

class TurtlebotFollower : public nodelet::Nodelet

{

public:

/*!

* @brief The constructor for the follower.

* Constructor for the follower.

*/

TurtlebotFollower() : min_y_(0.1), max_y_(0.5),

min_x_(-0.2), max_x_(0.2),

max_z_(0.8), goal_z_(0.6),

z_scale_(1.0), x_scale_(5.0)

{

}

~TurtlebotFollower()

29

{

delete config_srv_;

}

private:

double min_y_; /**< The minimum y position of the points in the box. */

double max_y_; /**< The maximum y position of the points in the box. */

double min_x_; /**< The minimum x position of the points in the box. */

double max_x_; /**< The maximum x position of the points in the box. */

double max_z_; /**< The maximum z position of the points in the box. */

double goal_z_; /**< The distance away from the robot to hold the

centroid */

double z_scale_; /**< The scaling factor for translational robot speed

*/

double x_scale_; /**< The scaling factor for rotational robot speed */

bool enabled_; /**< Enable/disable following; just prevents motor

commands */

// Service for start/stop following

ros::ServiceServer switch_srv_;

// Dynamic reconfigure server

dynamic_reconfigure::Server<turtlebot_follower::FollowerConfig>*

config_srv_;

/*!

* @brief OnInit method from node handle.

* OnInit method from node handle. Sets up the parameters

* and topics.

*/

virtual void onInit()

{

ros::NodeHandle& nh = getNodeHandle();

ros::NodeHandle& private_nh = getPrivateNodeHandle();

private_nh.getParam("min_y", min_y_);

private_nh.getParam("max_y", max_y_);

private_nh.getParam("min_x", min_x_);

private_nh.getParam("max_x", max_x_);

private_nh.getParam("max_z", max_z_);

30

private_nh.getParam("goal_z", goal_z_);

private_nh.getParam("z_scale", z_scale_);

private_nh.getParam("x_scale", x_scale_);

private_nh.getParam("enabled", enabled_);

cmdpub_ = private_nh.advertise<geometry_msgs::Twist> ("cmd_vel", 1);

markerpub_ =

private_nh.advertise<visualization_msgs::Marker>("marker",1);

bboxpub_ = private_nh.advertise<visualization_msgs::Marker>("bbox",1);

sub_= nh.subscribe<sensor_msgs::Image>("depth/image_rect", 1,

&TurtlebotFollower::imagecb, this);

switch_srv_ = private_nh.advertiseService("change_state",

&TurtlebotFollower::changeModeSrvCb, this);

config_srv_ = new

dynamic_reconfigure::Server<turtlebot_follower::FollowerConfig>(private_nh

);

dynamic_reconfigure::Server<turtlebot_follower::FollowerConfig>::CallbackT

ype f =

boost::bind(&TurtlebotFollower::reconfigure, this, _1, _2);

config_srv_->setCallback(f);

}

void reconfigure(turtlebot_follower::FollowerConfig &config, uint32_t

level)

{

min_y_ = config.min_y;

max_y_ = config.max_y;

min_x_ = config.min_x;

max_x_ = config.max_x;

max_z_ = config.max_z;

goal_z_ = config.goal_z;

z_scale_ = config.z_scale;

x_scale_ = config.x_scale;

}

/*!

* @brief Callback for point clouds.

31

* Callback for depth images. It finds the centroid

* of the points in a box in the center of the image.

* Publishes cmd_vel messages with the goal from the image.

* @param cloud The point cloud message.

*/

void imagecb(const sensor_msgs::ImageConstPtr& depth_msg)

{

// Precompute the sin function for each row and column

uint32_t image_width = depth_msg->width;

float x_radians_per_pixel = 60.0/57.0/image_width;

float sin_pixel_x[image_width];

for (int x = 0; x < image_width; ++x) {

sin_pixel_x[x] = sin((x - image_width/ 2.0) * x_radians_per_pixel);

}

uint32_t image_height = depth_msg->height;

float y_radians_per_pixel = 45.0/57.0/image_width;

float sin_pixel_y[image_height];

for (int y = 0; y < image_height; ++y) {

// Sign opposite x for y up values

sin_pixel_y[y] = sin((image_height/ 2.0 - y) *

y_radians_per_pixel);

}

//X,Y,Z of the centroid

float x = 0.0;

float y = 0.0;

float z = 1e6;

//Number of points observed

unsigned int n = 0;

//Iterate through all the points in the region and find the average of

the position

const float* depth_row = reinterpret_cast<const

float*>(&depth_msg->data[0]);

int row_step = depth_msg->step / sizeof(float);

for (int v = 0; v < (int)depth_msg->height; ++v, depth_row +=

row_step)

{

32

for (int u = 0; u < (int)depth_msg->width; ++u)

{

float depth =

depth_image_proc::DepthTraits<float>::toMeters(depth_row[u]);

if (!depth_image_proc::DepthTraits<float>::valid(depth) || depth >

max_z_) continue;

float y_val = sin_pixel_y[v] * depth;

float x_val = sin_pixel_x[u] * depth;

if (y_val > min_y_ && y_val < max_y_ &&

x_val > min_x_ && x_val < max_x_)

{

x += x_val;

y += y_val;

z = std::min(z, depth); //approximate depth as forward.

n++;

}

}

}

//If there are points, find the centroid and calculate the command

goal.

//If there are no points, simply publish a stop goal.

if (n>4000)

{

x /= n;

y /= n;

if(z > max_z_){

ROS_INFO_THROTTLE(1, "Centroid too far away %f, stopping the

robot\n", z);

if (enabled_)

{

cmdpub_.publish(geometry_msgs::TwistPtr(new

geometry_msgs::Twist()));

}

// Added 0.1 z velocity to indicate robot has lost target

geometry_msgs::TwistPtr cmd(new geometry_msgs::Twist());

cmd->linear.z = 0.1;

cmdpub_.publish(cmd);

return;

}

33

ROS_INFO_THROTTLE(1, "Centroid at %f %f %f with %d points", x, y, z,

n);

publishMarker(x, y, z);

if (enabled_)

{

geometry_msgs::TwistPtr cmd(new geometry_msgs::Twist());

cmd->linear.x = (z - goal_z_) * z_scale_;

cmd->angular.z = -x * x_scale_;

cmdpub_.publish(cmd);

}

}

else

{

ROS_INFO_THROTTLE(1, "Not enough points(%d) detected, stopping the

robot", n);

publishMarker(x, y, z);

if (enabled_)

{

cmdpub_.publish(geometry_msgs::TwistPtr(new

geometry_msgs::Twist()));

}

// Added 0.1 z velocity to indicate robot has lost target

geometry_msgs::TwistPtr cmd(new geometry_msgs::Twist());

cmd->linear.z = 0.1;

cmdpub_.publish(cmd);

}

publishBbox();

}

bool changeModeSrvCb(turtlebot_msgs::SetFollowState::Request& request,

turtlebot_msgs::SetFollowState::Response& response)

{

if ((enabled_ == true) && (request.state == request.STOPPED))

{

ROS_INFO("Change mode service request: following stopped");

34

cmdpub_.publish(geometry_msgs::TwistPtr(new

geometry_msgs::Twist()));

enabled_ = false;

}

else if ((enabled_ == false) && (request.state == request.FOLLOW))

{

ROS_INFO("Change mode service request: following (re)started");

enabled_ = true;

}

response.result = response.OK;

return true;

}

void publishMarker(double x,double y,double z)

{

visualization_msgs::Marker marker;

marker.header.frame_id = "/camera_rgb_optical_frame";

marker.header.stamp = ros::Time();

marker.ns = "my_namespace";

marker.id = 0;

marker.type = visualization_msgs::Marker::SPHERE;

marker.action = visualization_msgs::Marker::ADD;

marker.pose.position.x = x;

marker.pose.position.y = y;

marker.pose.position.z = z;

marker.pose.orientation.x = 0.0;

marker.pose.orientation.y = 0.0;

marker.pose.orientation.z = 0.0;

marker.pose.orientation.w = 1.0;

marker.scale.x = 0.2;

marker.scale.y = 0.2;

marker.scale.z = 0.2;

marker.color.a = 1.0;

marker.color.r = 1.0;

marker.color.g = 0.0;

marker.color.b = 0.0;

//only if using a MESH_RESOURCE marker type:

markerpub_.publish(marker);

}

35

void publishBbox()

{

double x = (min_x_ + max_x_)/2;

double y = (min_y_ + max_y_)/2;

double z = (0 + max_z_)/2;

double scale_x = (max_x_ - x)*2;

double scale_y = (max_y_ - y)*2;

double scale_z = (max_z_ - z)*2;

visualization_msgs::Marker marker;

marker.header.frame_id = "/camera_rgb_optical_frame";

marker.header.stamp = ros::Time();

marker.ns = "my_namespace";

marker.id = 1;

marker.type = visualization_msgs::Marker::CUBE;

marker.action = visualization_msgs::Marker::ADD;

marker.pose.position.x = x;

marker.pose.position.y = -y;

marker.pose.position.z = z;

marker.pose.orientation.x = 0.0;

marker.pose.orientation.y = 0.0;

marker.pose.orientation.z = 0.0;

marker.pose.orientation.w = 1.0;

marker.scale.x = scale_x;

marker.scale.y = scale_y;

marker.scale.z = scale_z;

marker.color.a = 0.5;

marker.color.r = 0.0;

marker.color.g = 1.0;

marker.color.b = 0.0;

//only if using a MESH_RESOURCE marker type:

bboxpub_.publish(marker);

}

ros::Subscriber sub_;

ros::Publisher cmdpub_;

ros::Publisher markerpub_;

ros::Publisher bboxpub_;

36

};

PLUGINLIB_DECLARE_CLASS(turtlebot_follower, TurtlebotFollower,

turtlebot_follower::TurtlebotFollower, nodelet::Nodelet);

}

37

