
Contest 1 Report

MIE443 Mechatronics Systems: Design & Integration
Contest 1: Where am I? Autonomous Robot Search of an Environment

Due: February 13th, 2024

Team #4

Team Member Student Number

Henry (Hua Hao) Qi 1005758039

Harry Park 1005674405

Alastair Sim 1006460287

Yi Lian 1005709333

1.0 Problem Definition/Objective

The goal of MIE443: Contest 1 is to perform an autonomous robot search of an unknown
environment. This search is conducted using a TurtleBot, which will drive around autonomously
in the unknown environment while using the ROS gmapping libraries to generate a map using
the sensory feedback from a Kinect sensor. The team is assigned to develop the exploration
algorithm for the robot to navigate autonomously without human intervention. The exploration
task is defined to be fixed timed, with a robot-based subject of action, and a movement goal of
coverage. The fixed time constraint is placed as the robot must map the environment within a
time limit. In a real-world scenario, this time constraint may be due to environmental or power
restrictions. Although the task is fixed-timed, there is a preference for minimizing the mapping
time. This is beneficial as the extra time could be used to account for unforeseen circumstances
(ie. blockage). The subject of action is robot-based since the idea of the task is to have the robot
place itself in the environment. Lastly, the movement goal is to maximize coverage since the
robot should map as much of the unknown environment as possible.

1.1 Contest Requirements

The contest requirements are outlined as follows:

● The TurtleBot has a time limit of 8 minutes to both explore and map the environment.
● The robot must perform the overall task in autonomous mode. There will be no human

intervention with the robot.
● The robot must use sensory feedback to navigate the environment. The robot cannot use a

fixed sequence of movements without the help of sensors.
● There must be a speed limitation on the robot that will not allow it to go any faster than

0.25m/s when it is navigating the environment and 0.1m/s when it is close to obstacles
such as walls. This is to ensure consistency in mapping.

● The contest environment will be contained within a 4.87x4.87 m2 area with unknown
static objects in the environment.

1

2.0 Strategy

Since the mapping environment is unknown until the day of the contest and a time constraint is
placed for the mapping task, the team decided to develop an algorithm that allows the robot to
quickly navigate the scene along with random movements to increase the coverage of the map.
The overall algorithm is sequential as the code is divided into two halves. The first is a reactive
wall-following approach, while the second involves deliberate turns to explore the center of the
map. Additionally, the robot needs to avoid obstacles, which means it would need to redirect
from its current position when the wall is too close, or if the bumpers hit an obstacle. To
implement all of the above, the team developed an algorithm that defines 2 states of the robot:
scanning and travelling. When the TurtleBot is in motion during the travel state or scanning state,
it will subscribe to ROS topics to constantly check if any bumpers are hit, or if the laser sensors
detect objects in front to avoid hitting obstacles.

2.1 Travelling State

During the travelling state, the robot will use a wall-following algorithm to guide the TurtleBot,
where it turns to the left or right in small increments when it approaches too close to the wall.
Although this does allow the robot to navigate through the maze and avoid obstacles, it can only
produce the same sequence and may fall into a loop where it only reaches certain regions of the
map. Hence, the team decided to implement additional actions with timeouts and loop counts to
avoid such loopholes and add random rotations to increase the coverage while navigating.

2.1.1 Timeouts and Loop Counts in Travelling State

A time limit is set to the travel state so that after a certain amount of time has passed, the robot
will halt the wall-following strategy and begin its attempt to navigate to the centre of the map.
This is done by prompting the robot to make a 90-degree turn every 15 seconds if it is close to a
wall while travelling. This allows the robot to scan any areas in the centre that it missed during
its initial navigation.

Additionally, in case the robot gets stuck in a narrow pathway, the team added a loop count to
limit the number of turns the robot can make during the travelling state. This allows the robot to
escape dead-end areas where it cannot rely solely on its laser sensor readings.

2

2.2 Scanning State

The scanning state is implemented as a way to search for open areas in the environment when the
robot is stuck in a narrow pathway or a corner of the environment. The idea of the scanning state
is to scan 360 degrees around its surroundings while standing in place and redirect to the path
with maximum clearance received from sensor feedback.

3.0 Robot Design

3.1 Sensory Design

The sensory design of the robot consists of proprioceptive and exteroceptive sensors. The
proprioceptive sensors, which include the internal gyroscope and motor encoders, will be
discussed in Section 3.1.1 and the exteroceptive sensors, which include the Kinect sensor and
bumpers, will be discussed in Section 3.1.2.

3.1.1 Proprioceptive Sensors

Proprioceptive sensors are used to determine the internal state of the robot. They can help
provide internal information about the robot, such as its orientation as well as linear and angular
velocities. In our algorithm, we rely on using odometry to estimate the robot’s position and
orientation relative to a starting location. This starting point is given as an x and y coordinate as
well as an orientation around the z-axis. While the x and y coordinate position of the robot is not
used as often in our algorithm, the yaw is used extensively to track the turns that the robot
makes. This is done using the internal gyroscope, which helps detect, measure, and maintain the
angular motions of the robot. With the help of the gyroscope, we can specify a certain angle for
the robot to turn, and determine when the robot is done turning by comparing the yaw of the
initial and final positions of the robot. This can ensure that the intended turns for the robot are
carried out accurately. As well, the gyroscope is also used to maintain the robot’s angular
velocity, which is crucial in both travelling and scanning. When travelling, the robot is
programmed to turn at a low speed. This is because yaw measurements are taken every second,
thus faster turns will lead to less accurate turns since it is easy to overshoot. In terms of scanning,
the robot is programmed to turn 360 degrees slowly to make scans of its nearby surrounding
environment and search for open areas to travel to. This is to maintain consistency and reduce
errors in mapping while giving enough time to obtain the sensor distance corresponding to each
measured yaw.

3

The second set of proprioceptive sensors used is the robot’s motor encoders. A motor encoder is
used to provide information on a rotary motor’s speed and position. With the help of motor
encoders, the robot’s linear velocity can be specified and maintained. This is important as the
linear velocity of the robot must be within the contest requirement, where it must not exceed 0.25
m/s when navigating and 0.1 m/s when close to obstacles. The robot is programmed to travel at a
low speed, providing ample time for obstacle detection and avoidance while maintaining
mapping quality.

3.1.2 Exteroceptive Sensors

Exteroceptive sensors are used to determine the external state of the robot. They can help provide
external information about the environment, such as the layout of surrounding structures. In our
algorithm, we rely on the Kinect depth sensor attached to the robot to visualize the unknown
environment in which the robot is located. The Kinetic depth sensors use laser scanning by
subscribing to the scan topic and retrieving laser distances. Using the 3D depth sensor, the robot
has a 58-degree horizontal field of view and a nominal range of 0.8-3.5 meters, which is useful
for both mapping and obstacle avoidance. The depth sensor acts similarly to eyes, where our
algorithm uses the sensor feedback to determine if the robot needs to travel in another direction
to avoid an obstacle and scan for which area has more open space for the robot to travel to.
During the travel state, the robot is constantly using the depth sensor to scan the environment in
front of it. If any structures are sensed, they will be mapped using the gmapping libraries. In the
case that the obstacles are within a preset potential collision distance, our algorithm will
determine the turn direction that will navigate the robot away from the obstacle, toward a more
open area. This is done by dividing the laser scan into three sections: left, center, and right. By
comparing the distances measured in the three sections, the direction with the farthest distance
(equal to the most open area) is chosen as the new direction for the robot to travel. In addition to
normal obstacle avoidance, if the robot gets stuck in a narrow pathway or a corner, the robot also
uses a 360-degree scan to find a new direction of travel. These scans are also used to map any
missing spots in the generated map.

On top of the Kinect sensor, the robot is equipped with three bumpers located on the left, center,
and right sides of the base platform of the robot. These sensors help the robot detect any
collisions with obstacles. The sensor feedback of the bumpers helps tell the robot if it has
collided with any obstacles that may have been missed in its blind spot. Once the bumper has
been pressed, the algorithm determines which direction the obstacle is in and moves the robot
away from it.

4

3.2 Controller Design

To implement the strategy described in section 2.0, the controller was designed to operate the
robot in two different main states: when the robot is moving and when it is stationary. When the
robot is moving, it uses callback functions and custom functions explained in section 3.2.2 to
update its parameters and check if its motion is complete, or if the robot must be stopped due to
bumpers being triggered or the distance read from laser sensors being too close. Once the robot
is stopped, it is directed to the stationary state, where it receives instructions for its next
movement. With the help of custom functions, the robot can easily migrate from one state to
another without being interrupted while in motion.

When the robot is stationary, instructions are given based on the robot’s substate: either the
scanning state or the travelling state. The travelling state is its default state, where it navigates
through the environment by avoiding obstacles and following the edges of the obstacles
according to its laser scan readings. The travelling state is divided into two parts in response to
the total time elapsed. The first and second halves have the same functionality, with some
modifications included for the second half such as timeouts and loop counts. Initially, the
TurtleBot will travel based on a wall-following mechanism to sweep around the exterior
environment. In the second half of the run, the robot will timeout every 15 seconds of moving in
the same direction, and turn towards the centre of the map by reading its left and right laser
sensors. It will also force the TurtleBot to travel through narrow paths if encountered. During any
time of the run, if the loop count in travelling mode exceeds its limit, the TurtleBot is directed to
the scanning state, where it completes a full rotational sweep of its surroundings and orients itself
to travel in the most open position.

Since the robot is directed to carry out multiple movements during its stationary state, the team
implemented a “step counter” that counts the steps of instructions to make sure each command
was executed individually. The details of the algorithm are explained in the following sections
along with a visual representation of the structure of the code in Figures 3.2.1 and 3.2.2.

5

Figure 3.2.1: How Moving State Directs to Stationary State

Figure 3.2.2: How Stationary State Directs to Moving State

6

3.2.1 Main Contest Code (contest1.cpp)

This is the main code that initializes ROS by subscribing to its odometry values, laser scan
values, and bumper states, as well as publishing velocities. After initialization, a while loop is
constructed to execute commands appropriately, as outlined in previous sections.

Upon startup, it executes ros::spinOnce() to update information on subscribed topics or to
publish them. If the laser sensor readings are too close, it overrides its speed to 0.1m/s and
increases the turning angle increments for turning in travelling mode. These adjustments were
made to allow for more consistent mapping since the edges of the map tend to misalign. The
travel time limit is also increased when close to obstacles, in order to compensate for its slow
speed. The bumper states are also checked to see if any bumper was triggered. The last step of
preliminary checking is to determine if the robot is moving or stationary according to its linear
and angular velocities.

Initially, the robot’s state is set to scanning mode, which allows it to scan 360 degrees around it
using the custom turnCCW() function. Upon startup, however, the robot’s yaw is set to 0,
regardless of its actual orientation. To mitigate error from this misleading information, at step 0,
no action is taken and increments the step by 1 to load the proper orientation. At steps 1 & 2,
respectively, the robot is instructed to move 180 degrees. This is to ensure a full 360 sweep has
been made, since turning 360 degrees is not ideal using the custom function. While it is turning,
it enters the moving state, where it constantly checks if the turning is complete and records the
yaw associated with the maximum open distance. To prevent the robot from moving in the same
direction or turning directly back to where it came from, it will not record the yaw equal to the
current orientation nor the orientation directly opposite to it. Once the scan is complete, it directs
to the travelling mode after positioning itself to the desired orientation, decreasing the step to 0
again.

In the first half of the run, after the robot enters travelling mode, at step 0, it starts recording the
time elapsed during the travel state. It then moves on to step 1, where it instructs to move
forward at a speed predetermined at the beginning of the while loop. While it is moving, if any of
the left, right, or centre laser readings fall below the stop limit, the robot will stop and enter step
2, where it adjusts its orientation by turning to the right or left in small increments. There is a
limit on how many times it can turn, however, to ensure it does not get stuck on narrow corners.
Once it exceeds the loop count limit, it exits the travel mode and redirects to scanning mode.

In the second half of the run, the TurtleBot will rotate 90 degrees away from the wall it is
following. This is done by reading the left and right sensors every 15 seconds of moving in the
same direction. If the left sensor reads a greater distance, it assumes the wall it is following is on

7

the right side and turns 90 degrees counter-clockwise, and vice versa. Additionally, the robot will
force movements towards narrow paths. This is achieved by forcing a movement forward in
small increments if the front sensor readings exceed the left and right sensor readings, implying
it is facing a narrow path in front of it.

When the robot is in motion, it constantly checks if the bumpers are pressed using the bumper
callback function in bumper.cpp. If any of the bumpers have been pressed, the robot will move
back 0.2m using the moveBack() function and redirect to the scanning state. This procedure is
intended to be used only in situations where the laser sensors do not read properly and would
need to redirect.

At the end of the while loop, the velocity parameters as well as elapsed time are updated.

3.2.2 Functions to Move and Turn (move.cpp and move.h)

The low-level control of our robot showcases how the robot executes the commands determined
by the high-level control. This includes turning, forward and backward movement.

There are two turning functions implemented, one for clockwise (turnCW()) and one for
counterclockwise (turnCCW()). The turning functions take in a target yaw and normalize it to
ensure it remains in a 0-360 degree range. This avoids out-of-bounds errors and ensures smooth
turning. The function keeps track of the remainder yaw after turns to ensure the robot reaches the
desired orientation needed by the higher-level controls. For counter-clockwise turns the angular
velocity value is set to a positive value and for clockwise turns the angular velocity is set to a
negative value. Similar to turning, the forward (moveFront()) and backward ((moveBack())
movement controls take in a target distance and adjust the linear velocity accordingly.

The turning and moving functions call on correction functions as well. These correction
functions (checkMoveFront(), checkMoveBack(), checkTurnCCW(), checkTurnCW())
continuously monitor the robot’s orientation during rotation by checking if the TurtleBot has
achieved its target yaw/ distance and adjusting rotation/ translation accordingly. In all of the
above functions, linear and angular velocities, as well as the robot's current position are input as
reference parameters so that they can be updated within the custom functions.

3.2.3 Laser Callback Function (laserCallback.cpp, laserCallback.h)

The laser callback function divides the field of view into 3 sections: centre, left, and right. It then
calculates the minimum distance it reads from each of its sections, returning the values
minLaserDist, leftLaserDist, and rightLaserDist respectively.

8

4.0 Future Recommendations (1 mark)

This section outlines recommendations for enhancements of the robot's exploration capabilities
including frontier exploration, transforms, multi-threading, and PID controls. We would
implement a frontier exploration algorithm that would be a separate state from our random
exploration algorithm. The algorithm would use a cost map to define frontiers in the gmapping
occupancy grid and we would need to test different ways of integrating the frontier algorithm
with our random exploration algorithm. This would involve potentially using multi-threaded
spinning in order to populate the cost map and either override the random control when a
threshold has been reached in the cost map, overriding when passing by a potential frontier in
order to save time or intermittent swaps between both algorithms. Another future implementation
could be setting up transforms between the Kinect sensor, bumper sensors and kobuki bot. This
would be beneficial to our robot allowing us to implement coordinate frames for our robot to
understand where it is relative to other objects or locations. It would also allow for simplified
sensor fusion by adding a relationship between the positions of the sensors and the robot.
Furthermore, we could implement PID controls throughout our robot to ensure accuracy in our
speed, heading and distance control. For example, PID could be used to maintain a speed based
on differences between our desired and actual speed. As for headings and distance, they could be
used to maintain a set distance from a wall or correct deviations in our movement from obstacles.

Our approach was to start with a simple autonomous drive control and then iterate by addressing
one issue with our exploration at a time, eventually culminating in our random, wall-following
approach. This approach was beneficial to learning about ROS and autonomous control and
should be kept as our approach.

9

5.0 Appendix

Appendix A: Contribution Table

Section Subsection Henry (Hua Hao) Qi Harry Park Alastair Sim Yi Lian

1.0 ✔

2.0 ✔ ✔

3.0 3.1 ✔ ✔

3.2 ✔ ✔

4.0 ✔

Code ✔ ✔ ✔

10

Appendix B: contest1.cpp
#include "globals.h"

#include "laserCallback.cpp"

#include "move.cpp"

#include "bumper.cpp"

bool local = true;

//// Initialize states & loop counts

bool isMoving = false;

int stepsCount = 0;

int subStepsCount = 0;

int travelLoop = 0;

uint64_t travelTimeLimit = 12;

//// Initialize variables for movement

float targetDist = 0.0;

float currentX = 0.0;

float currentY = 0.0;

float openYaw = 0.0;

float prevYaw = 0.0;

float turnAngle = 10.0;

float turtleSpeed = 0.0;

float turtleAngle = 0.0;

float maxLaserDist = 0.0; //variable to store recorded yaw during travel

//// Timer variables to record travel time

uint64_t travelElapsed = 0;

std::chrono::time_point<std::chrono::system_clock> travelStart;

int main(int argc, char **argv)

11

{

ros::init(argc, argv, "image_listener");

ros::NodeHandle nh;

ros::Subscriber bumper_sub = nh.subscribe("mobile_base/events/bumper",

10, &bumperCallback);

ros::Subscriber laser_sub = nh.subscribe("scan", 10, &laserCallback);

ros::Subscriber odom = nh.subscribe("odom", 1, &odomCallback);

ros::Publisher vel_pub =

nh.advertise<geometry_msgs::Twist>("cmd_vel_mux/input/teleop", 1);

ros::Rate loop_rate(10);

geometry_msgs::Twist vel;

// Contest countdown timer

std::chrono::time_point<std::chrono::system_clock> start;

start = std::chrono::system_clock::now();

uint64_t secondsElapsed = 0;

// Initiallize angular and linear velocities

float angular = 0.0;

float linear = 0.0;

// Initialize to scan state & substep 0

stepsCount = SCAN_STEP;

subStepsCount = 0;

// Print statement to differentiate local and github repositories

if (local) ROS_INFO("This is Local, not uploaded to github");

else ROS_INFO("This is Oogway, uploaded to github");

while(ros::ok() && secondsElapsed <= 480) {

ros::spinOnce();

12

ROS_INFO("Substep: %d", subStepsCount);

ROS_INFO("FRONT: %g", minLaserDist);

ROS_INFO("RIGHT-END: %g", rightLaserDist);

ROS_INFO("LEFT-END: %g", leftLaserDist);

//PRELIMINARY CHECKINGS

//// Check if movement is complete

isMoving = (angular != 0.0 || linear != 0.0);

ROS_INFO("Angular speed: %f, Linear speed: %f", angular, linear);

//// Check if bumper is hit

bool anyBumperPressed = false;

for (uint32_t b_idx = 0; b_idx < N_BUMPER; ++b_idx) {

anyBumperPressed |= (bumper[b_idx] ==

kobuki_msgs::BumperEvent::PRESSED); //iterate through bumper, check if

pressed

}

ROS_INFO("Bumper is pressed: %d", anyBumperPressed);

//// Check for speed limit

if (minLaserDist < slowDownLimit &&((leftLaserDist <

slowDownLimit || rightLaserDist < slowDownLimit) && minLaserDist <

slowDownLimit))

{

turtleSpeed = slowDown;

turtleAngle = slowDownAngular;

travelTimeLimit = 30;

turnAngle = 20;

ROS_INFO("SLOWING DOWN...");

}

else

{

turtleSpeed = normal;

13

turtleAngle = normalAngular;

travelTimeLimit = 15;

turnAngle = 10;

ROS_INFO("NORMAL SPEED");

}

//When Oogway is stationary, give directions

if (!isMoving)

{

// SCANNING STEP

if (stepsCount == SCAN_STEP)

{

ROS_INFO("SCANNING...");

//skip first loop as yaw isn't updated yet

if (subStepsCount == 0)

{

subStepsCount++;

}

// initially turn 180 ccw

else if (subStepsCount == 1)

{

ROS_INFO("YAW::::: %f", yaw);

targetYaw = yaw +180;

turnCCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

subStepsCount++;

}

// turn another 180 ccw for 1 full loop

else if (subStepsCount == 2)

{

14

targetYaw = yaw +180;

turnCCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

subStepsCount++;

}

// direct to desired yaw and exit to travel mode

else if (subStepsCount == 3)

{

targetYaw = openYaw;

if (targetYaw > yaw)

{

if (yaw < 180 && yaw+360 - targetYaw < 180)

turnCW(targetYaw, angular, linear, remainingYaw, turtleAngle);

else turnCCW(targetYaw, angular, linear,

remainingYaw, turtleAngle);

}

else

{

if (yaw >= 180 && targetYaw+360 - yaw < 180)

turnCCW(targetYaw, angular, linear, remainingYaw, turtleAngle);

else turnCW(targetYaw, angular, linear,

remainingYaw, turtleAngle);

}

subStepsCount = 0;

stepsCount = TRAVEL_STEP;

maxLaserDist = 0.0;

ROS_INFO("Entering Travel mode");

travelLoop = 0;

}

15

}

// TRAVELLING STEP

else if (stepsCount == TRAVEL_STEP)

{

ROS_INFO("TRAVELLING (NOT MOVING YET)...");

//Iniitate clock for timeout

if (subStepsCount == 0)

{

travelStart = std::chrono::system_clock::now();

subStepsCount++;

}

//give travel instructions - go straight

else if (subStepsCount == 1)

{

linear = turtleSpeed;

angular = 0.0;

}

// STOP LIMIT REACHED: instruct to turn left or right

else if (subStepsCount == 2)

{

if (travelLoop >= 6) //reduce turn increments if loop

count exceeds 5

{

ROS_INFO("Too much Gittering");

turnAngle = 10;

if (travelLoop >= travelLoopLimit)

{

subStepsCount = 0;

travelLoop = 0;

stepsCount = SCAN_STEP;

turnAngle = 20;

16

}

}

/// turn until clearance if travel loop limit not

reached

if (leftLaserDist > rightLaserDist)

{

targetYaw = yaw +turnAngle;

turnCCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

travelLoop++;

}

else

{

targetYaw = yaw -turnAngle;

turnCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

travelLoop++;

}

// move forward in small increments in narrow paths

if (secondsElapsed>240 && travelLoop >10 &&

leftLaserDist<minLaserDist && rightLaserDist<minLaserDist)

{

//break;

currentX = posX;

currentY = posY;

targetDist = (minLaserDist-stopLimit)/2;

moveFront(targetDist, currentX, currentY, angular,

linear, turtleSpeed);

travelLoop = 0;

}

}

// turn 90 towards the middle of the map after time limit

else if (subStepsCount == 3)

{

17

ROS_INFO("!!!!!!!!!!!!!!!TIME LIMIT!!!!!!!!!!!!!");

if (rightLaserDist > leftLaserDist)

{

targetYaw = yaw -90;

turnCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

}

else

{

targetYaw = yaw +90;

turnCCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

}

subStepsCount++;

}

}

}

//When bumper is hit while moving, stop and move back

else if (anyBumperPressed)

{

ROS_INFO("BANG!!! Bumper Pressed");

currentX = posX;

currentY = posY;

targetDist = 0.2;

moveBack(targetDist, currentX, currentY, angular, linear,

turtleSpeed);

stepsCount = SCAN_STEP;

subStepsCount = 0;

}

18

//Monitor Travelling

else if (stepsCount == TRAVEL_STEP)

{

ROS_INFO("Travelling...");

//if timeout reached & after 240s passed, turn 360

if (travelElapsed > travelTimeLimit && secondsElapsed > 240)

{

travelElapsed = 0.0;

subStepsCount = 3;

linear = 0.0;

angular = 0.0;

}

//complete scanning motion after transitioning from scanning

state

if (subStepsCount == 0)

{

if (angular > 0) checkTurnCCW(targetYaw, angular, linear,

remainingYaw, turtleAngle);

else checkTurnCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

}

// Check for laserScan detection (obstacle avoidance)

if (subStepsCount == 1)

{

if (leftLaserDist < slowDownLimit || minLaserDist <

slowDownLimit || rightLaserDist < slowDownLimit)

{

angular = 0.0;

linear = turtleSpeed;

}

if (leftLaserDist < stopLimit || minLaserDist < stopLimit

|| rightLaserDist < stopLimit)

{

19

subStepsCount++;

angular = 0.0;

linear = 0.0;

}

}

//obstacle avoidance - check if turning is complete

else if (subStepsCount == 2)

{

if (angular != 0)

{

if (angular > 0) checkTurnCCW(targetYaw, angular,

linear, remainingYaw, turtleAngle);

else checkTurnCW(targetYaw, angular, linear,

remainingYaw, turtleAngle);

}

// check movement for target distance

if (linear !=0)

{

//break;

checkMoveFront(targetDist, currentX, currentY,

angular, linear, turtleSpeed);

}

// Go back to travelling state if laser scan clears

if (leftLaserDist > clearLimit && minLaserDist >

clearLimit && rightLaserDist > clearLimit)

{

angular = 0.0;

linear = 0.0;

subStepsCount--;

travelLoop = 0;

travelStart = std::chrono::system_clock::now();

}

20

}

//Complete turning motion during 90 degree turns

else if (subStepsCount == 4)

{

ROS_INFO("TURNING AFTER TIME LIMIT REACHED");

if (angular>0) checkTurnCCW(targetYaw, angular, linear,

remainingYaw, turtleAngle);

else checkTurnCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

if (angular==0.0) subStepsCount=0;

}

}

//isMoving

else

{

ROS_INFO("Moving...");

//record yaw with most opening during 360 scan

if (stepsCount == SCAN_STEP && subStepsCount != 0)

{

ROS_INFO("recording yaw...");

if (maxLaserDist < minLaserDist && minLaserDist !=

std::numeric_limits<float>::infinity())

{

maxLaserDist = minLaserDist;

openYaw = yaw;

ROS_INFO("Max yaw is: %f", openYaw);

}

}

//Checking if movement is done

if (linear != 0)

21

{

if (linear > 0) checkMoveFront(targetDist, currentX,

currentY, angular, linear, turtleSpeed);

else checkMoveBack(targetDist, currentX, currentY,

angular, linear, turtleSpeed);

}

if (angular != 0)

{

if (angular > 0) checkTurnCCW(targetYaw, angular, linear,

remainingYaw, turtleAngle);

else checkTurnCW(targetYaw, angular, linear, remainingYaw,

turtleAngle);

}

}

vel.linear.x = linear;

vel.angular.z = angular;

vel_pub.publish(vel);

//Update timer of elapsed travel time

if (stepsCount == TRAVEL_STEP && subStepsCount > 0 &&

subStepsCount < 3)

{

travelElapsed =

std::chrono::duration_cast<std::chrono::seconds>(std::chrono::system_clock

::now()-travelStart).count();

}

if (stepsCount == TRAVEL_STEP && subStepsCount == 2)

{

travelElapsed = 0;

}

//Update the timer

secondsElapsed =

std::chrono::duration_cast<std::chrono::seconds>(std::chrono::system_clock

::now()-start).count();

std::cout << "Time Elapsed:" << std:: endl;

22

std::cout << secondsElapsed << std:: endl;

std::cout << "Travel Time Elapsed:" << std:: endl;

std::cout << travelElapsed << std::endl;

std::cout << "Travel Loop:" << std:: endl;

std::cout << travelLoop << std::endl;

loop_rate.sleep();

}

return 0;

}

23

Appendix C : move.cpp
#include "move.h"

// Controls movement of robot including odometry callback function

float posX=0.0, posY=0.0, yaw=0.0;

float remainingYaw = std::numeric_limits<float>::infinity();

float targetYaw = std::numeric_limits<float>::infinity();

float remainingDist = std::numeric_limits<float>::infinity();

float dist = 0.0;

void odomCallback (const nav_msgs::Odometry::ConstPtr& msg)

{

posX = msg->pose.pose.position.x;

posY = msg->pose.pose.position.y;

yaw = tf::getYaw(msg->pose.pose.orientation);

if (yaw < 0) {

yaw += 2*M_PI;

}

yaw = RAD2DEG(yaw);

}

//function to turn counterclockwise

void turnCCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle)

{

//correct any out of bounds for targetYaw

if (targetYaw >= 360)

{

targetYaw = targetYaw - 360;

24

}

else if (targetYaw <= 0)

{

targetYaw = targetYaw + 360;

}

if (yaw > targetYaw && abs(yaw-targetYaw) > 4)

{

targetYaw += 360;

}

remainingYaw = targetYaw - yaw; //initialize remainingYaw

///* logic to check ismovingis done

if(remainingYaw <= 0.0 || abs(yaw-targetYaw) < 4) //stop once

remaining is less than 0

{

angular = 0.0;

linear = 0.0;

}

else //keep rotating as long as there is remaining yaw

{

angular = turtleAngle;

linear = 0.0;

}

}

//function to turn clockwise

void turnCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle)

{

//correct any out of bounds for targetYaw

if (targetYaw >= 360)

{

targetYaw = targetYaw - 360;

}

25

else if (targetYaw <= 0)

{

targetYaw = targetYaw + 360;

}

if (yaw < targetYaw && abs(yaw-targetYaw) > 4)

{

targetYaw -= 360;

}

remainingYaw = yaw - targetYaw;

if(remainingYaw <= 0.0 || abs(yaw-targetYaw) < 4) //stop once

remaining is less than 0

{

angular = 0.0;

linear = 0.0;

}

else //keep rotating as long as there is remaining yaw

{

angular = -turtleAngle;

linear = 0.0;

}

}

void checkTurnCCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle)

{

//correct any out of bounds for targetYaw

if (targetYaw >= 360)

{

targetYaw = targetYaw - 360;

}

else if (targetYaw <= 0)

26

{

targetYaw = targetYaw + 360;

}

if (yaw > targetYaw && abs(yaw-targetYaw) > 4) //need to tune

threshold value 4

{

targetYaw += 360;

}

remainingYaw = targetYaw - yaw; //initialize remainingYaw

ROS_INFO("Yaw: %f", yaw);

ROS_INFO("Target Yaw: %f", targetYaw);

ROS_INFO("Remaining Yaw: %f", remainingYaw);

///* logic to check ismovingis done

if(remainingYaw <= 0.0 || abs(yaw-targetYaw) < 4) //stop once

remaining is less than 0

{

angular = 0.0;

linear = 0.0;

//ROS_INFO("Turning is false!");

//ROS_INFO("Stopped turning...");

}

}

void checkTurnCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle)

{

//correct any out of bounds for targetYaw

if (targetYaw >= 360)

{

targetYaw = targetYaw - 360;

}

else if (targetYaw <= 0)

27

{

targetYaw = targetYaw + 360;

}

if (yaw < targetYaw && abs(yaw-targetYaw) > 4)

{

targetYaw -= 360;

}

remainingYaw = yaw - targetYaw;

ROS_INFO("Yaw: %f", yaw);

ROS_INFO("Target Yaw: %f", targetYaw);

ROS_INFO("Remaining Yaw: %f", remainingYaw);

if(remainingYaw <= 0.0 || abs(yaw-targetYaw) < 4) //stop once

remaining is less than 0

{

angular = 0.0;

linear = 0.0;

}

}

/////MOVING

//functions to move forwards and backwards

void moveFront (float& targetDist, float& currentX, float& currentY,

float& angular, float& linear, float& turtleSpeed)

{

dist = sqrt(pow(currentX-posX, 2) + pow(currentY-posY, 2));

remainingDist = targetDist - dist;

if (remainingDist <= 0)

{

angular = 0.0;

linear = 0.0;

28

ROS_INFO("COMPLETED MOVING!!");

}

else

{

angular = 0.0;

linear = turtleSpeed;

}

}

void moveBack (float& targetDist, float& currentX, float& currentY, float&

angular, float& linear, float& turtleSpeed)

{

dist = sqrt(pow(currentX-posX, 2) + pow(currentY-posY, 2));

remainingDist = targetDist - dist;

if (remainingDist <= 0)

{

angular = 0.0;

linear = 0.0;

ROS_INFO("COMPLETED MOVING!!");

}

else

{

angular = 0.0;

linear = -turtleSpeed;

}

}

//check functions to see if move completed - run while moving

void checkMoveFront (float& targetDist, float& currentX, float& currentY,

float& angular, float& linear, float& turtleSpeed)

{

dist = sqrt(pow(currentX-posX, 2) + pow(currentY-posY, 2));

29

remainingDist = targetDist - dist;

if (remainingDist <= 0)

{

angular = 0.0;

linear = 0.0;

ROS_INFO("COMPLETED MOVING!!");

}

else

{

angular = 0.0;

linear = turtleSpeed;

}

}

void checkMoveBack (float& targetDist, float& currentX, float& currentY,

float& angular, float& linear, float& turtleSpeed)

{

dist = sqrt(pow(currentX-posX, 2) + pow(currentY-posY, 2));

remainingDist = targetDist - dist;

if (remainingDist <= 0)

{

angular = 0.0;

linear = 0.0;

ROS_INFO("COMPLETED MOVING!!");

}

else

{

angular = 0.0;

linear = -turtleSpeed;

}

}

30

Appendix D: laserCallback.cpp

#include "laserCallback.h"

float minLaserDist = std::numeric_limits<float>::infinity();

float leftLaserDist = std::numeric_limits<float>::infinity();

float rightLaserDist = std::numeric_limits<float>::infinity();

int32_t nLasers=0, desiredNLasers=0, desiredAngle=15;

void laserCallback(const sensor_msgs::LaserScan::ConstPtr& msg)

{

minLaserDist = std::numeric_limits<float>::infinity();

leftLaserDist = std::numeric_limits<float>::infinity();

rightLaserDist = std::numeric_limits<float>::infinity();

nLasers = (msg->angle_max-msg->angle_min)/ msg->angle_increment; //639

desiredNLasers = DEG2RAD(desiredAngle)/msg->angle_increment; //5=53,

10=106, 15=159, 20=212

//ROSTOPIC INFO: angle_max=0.524, angle_min=-0.5215,

angle_increment=0.001636

//angle can fit in between +-30 degrees

//index 0 is right

//index nLasers(max) is left

// FRONT-FACING: 0 degrees, hence the midpoint of ranges' index

if (desiredAngle*M_PI/180 < msg->angle_max && desiredAngle*M_PI/180 >

msg->angle_min){ //if desiredAngle is within max/min angles

//CHECK CENTRE minDistance

for (uint32_t laser_idx = nLasers/2-desiredNLasers; laser_idx

<nLasers/2 + desiredNLasers; ++laser_idx){ //index within desired range

minLaserDist = std::min(minLaserDist, msg->ranges[laser_idx]);

}

31

//CHECK RIGHT maxDistance

for (uint32_t rLaser_idx = 0; rLaser_idx <

nLasers/2-desiredNLasers; ++rLaser_idx){

rightLaserDist = std::min(rightLaserDist,

msg->ranges[rLaser_idx]);

}

//CHECK LEFT maxDIstance

for (uint32_t lLaser_idx = nLasers/2+desiredNLasers; lLaser_idx <

nLasers; ++lLaser_idx){

leftLaserDist = std::min(leftLaserDist,

msg->ranges[lLaser_idx]);

}

}

else{

for (uint32_t laser_idx=0; laser_idx<nLasers; ++laser_idx){

minLaserDist = std::min(minLaserDist, msg->ranges[laser_idx]);

ROS_INFO("!!!OUT OF RANGE!!! - minLaserDist = %f",

minLaserDist);

}

}

}

32

Appendix E: bumper.cpp

#include "laserCallback.h"

float minLaserDist = std::numeric_limits<float>::infinity();

float leftLaserDist = std::numeric_limits<float>::infinity();

float rightLaserDist = std::numeric_limits<float>::infinity();

int32_t nLasers=0, desiredNLasers=0, desiredAngle=15;

void laserCallback(const sensor_msgs::LaserScan::ConstPtr& msg)

{

minLaserDist = std::numeric_limits<float>::infinity();

leftLaserDist = std::numeric_limits<float>::infinity();

rightLaserDist = std::numeric_limits<float>::infinity();

nLasers = (msg->angle_max-msg->angle_min)/ msg->angle_increment; //639

desiredNLasers = DEG2RAD(desiredAngle)/msg->angle_increment; //5=53,

10=106, 15=159, 20=212

//ROSTOPIC INFO: angle_max=0.524, angle_min=-0.5215,

angle_increment=0.001636

//angle can fit in between +-30 degrees

//index 0 is right

//index nLasers(max) is left

// FRONT-FACING: 0 degrees, hence the midpoint of ranges' index

if (desiredAngle*M_PI/180 < msg->angle_max && desiredAngle*M_PI/180 >

msg->angle_min){ //if desiredAngle is within max/min angles

//CHECK CENTRE minDistance

for (uint32_t laser_idx = nLasers/2-desiredNLasers; laser_idx

<nLasers/2 + desiredNLasers; ++laser_idx){ //index within desired range

minLaserDist = std::min(minLaserDist, msg->ranges[laser_idx]);

}

33

//CHECK RIGHT maxDistance

for (uint32_t rLaser_idx = 0; rLaser_idx <

nLasers/2-desiredNLasers; ++rLaser_idx){

rightLaserDist = std::min(rightLaserDist,

msg->ranges[rLaser_idx]);

}

//CHECK LEFT maxDIstance

for (uint32_t lLaser_idx = nLasers/2+desiredNLasers; lLaser_idx <

nLasers; ++lLaser_idx){

leftLaserDist = std::min(leftLaserDist,

msg->ranges[lLaser_idx]);

}

}

else{

for (uint32_t laser_idx=0; laser_idx<nLasers; ++laser_idx){

minLaserDist = std::min(minLaserDist, msg->ranges[laser_idx]);

ROS_INFO("!!!OUT OF RANGE!!! - minLaserDist = %f",

minLaserDist);

}

}

}

34

Appendix F: Header files

globals.h
#ifndef GLOBAL_HEADER

#define GLOBAL_HEADER

// Contains all global variables

//libraries needed

#include <ros/console.h>

#include "ros/ros.h"

#include <geometry_msgs/Twist.h>

#include <kobuki_msgs/BumperEvent.h>

#include <sensor_msgs/LaserScan.h>

#include <stdio.h>

#include <cmath>

#include <chrono>

#include <nav_msgs/Odometry.h>

#include <tf/transform_datatypes.h>

using namespace std;

// equations, definitions

#define N_BUMPER (3)

#define RAD2DEG(rad) ((rad)*180. /M_PI)

#define DEG2RAD(deg) ((deg)* M_PI /180.)

//global variables

const float slowDownLimit = 0.9;

const float stopLimit = 0.7;

const float clearLimit = 0.75;

//State variables: Determines which state turtlebot is in

35

const int TRAVEL_STEP = 1; //travel state

const int SCAN_STEP = 0; //scanning state

const int travelLoopLimit = 15; //gittering loop limit

extern bool isMoving; //boolean to determing if turtlebot is moving or not

extern int stepsCount; //sets state of turtlebot

extern int subStepsCount; //substates

extern int travelLoop; //loop count during travelling

extern uint64_t travelTimeLimit; //timeoutlimit for travelling state

//odometery variables

extern float posX, posY, yaw;

extern float targetDist; //store target distance for moving

extern float currentX; //record current position for moving

extern float currentY;

//moving variables

extern float angular, linear;

extern int turning;

extern bool isMoving;

const float normal=0.25, slowDown=0.1; //speed settings

const float normalAngular = M_PI/6, slowDownAngular = M_PI/4; //turn

faster when close to walls during scanning

extern float turtleSpeed; //speed override

extern float turtleAngle; //angular spped override

extern float openYaw; //openYaw for turning after scan

extern float prevYaw;

extern float turnAngle; //turn increment during travel

36

//bumper variables

extern uint8_t bumper[3];

extern bool anyBumperPressed;

extern uint8_t leftState, rightState, centerState;

//laser variables

extern float minLaserDist, leftLaserDist, rightLaserDist;

extern int32_t desiredAngle;

extern int32_t nLasers, desiredNLasers;

#endif

move.h
#ifndef MOVE_HEADER

#define MOVE_HEADER

#include "globals.h"

extern float targetYaw;

extern float remainingYaw;

extern float angular, linear;

extern bool isMoving;

extern float remainingDist;

extern float dist;

void odomCallback (const nav_msgs::Odometry::ConstPtr& msg);

//functions to turn

void turnCCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle);

void turnCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle);

//check functions to see if turn completed - run while moving

37

void checkTurnCCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle);

void checkTurnCW (float& targetYaw, float& angular, float& linear, float&

remainingYaw, float& turtleAngle);

//functions to move

void moveFront (float& targetDist, float& currentX, float& currentY,

float& angular, float& linear, float& turtleSpeed);

void moveBack (float& targetDist, float& currentX, float& currentY, float&

angular, float& linear, float&turtleSpeed);

//check functions to see if move completed - run while moving

void checkMoveFront (float& targetDist, float& currentX, float& currentY,

float& angular, float& linear, float&turtleSpeed);

void checkMoveBack (float& targetDist, float& currentX, float& currentY,

float& angular, float& linear, float& turtleSpeed);

#endif

laserCallback.h

#ifndef LASER_HEADER

#define LASER_HEADER

#include "globals.h"

// Laser related functions

void laserCallback(const sensor_msgs::LaserScan::ConstPtr& msg);

#endif

bumper.h

#ifndef BUMPER_HEADER

#define BUMPER_HEADER

#include "globals.h"

void bumperCallback(const kobuki_msgs::BumperEvent::ConstPtr& msg);

38

#endif

39

